SAW vs. BAW: How the Delay Line Technologies Stack Up

by Jaymie Murray 8. June 2015 08:11

SAW (Surface Acoustic Wave) and BAW (Bulk Acoustic Wave) technologies are widely used in a variety of applications, including filters, oscillators, transformers, and delay lines. SAW and BAW delay lines in particular offer several advantages over other signal wave technologies and are used in a variety of applications, from Electronic Warfare (EW) target generation to communications systems for television and video. While they are used in somewhat similar applications, SAW and BAW technologies are each unique and have distinctive characteristics. Factors such as required signal delay, frequency, footprint, and cost all must be considered when choosing the best delay line solution for a project. 

Both SAW and BAW devices exploit the piezoelectric effect of certain substrate materials such as quartz and lanthanum gallium silicate by using interdigital transducers (IDTs) to convert acoustic waves to electrical signals and vice versa. Delay lines that utilize SAW and BAW are designed to introduce a calculated delay into the transmission of a wave signal. This signal delay could be needed for a variety of reasons. For example, in weather Doppler systems, weather radars emit pulses which track the movement and location of objects such as hailstones and raindrops. BAW delay lines are used to control the timing of these pulses. SAW delay lines provide required delays to synchronize data in communications systems such as television broadcasting. 

In each of these examples, one technology is the best choice over another because of their respective characteristics. SAW delay lines are usually smaller and lighter than BAW delay lines, which gives them a smaller footprint and therefore can make them less expensive. SAW delay lines also typically offer a wide frequency range from 30 to 2000 MHz. However, SAW delay lines can only provide a fairly small delay range of 0.1 to 10 µsec. If a larger delay range is needed, then BAW delay lines, with a typical range of 0.15 to 3000 µsec, are the best option. This can translate into a larger footprint and raise costs somewhat, but the wider delay range allows for increased adaptability and flexibility.  BAW can also be safely used in a wider temperature range than devices that use SAW, making it a more appropriate choice for harsh or extreme conditions. 

While they are both equally reliable and can offer the delays needed for effective wave signal processing, SAW and BAW each have their own distinct advantages. Ultimately, the best delay line option will be the one that most closely meets important project requirements, such as footprint, frequency, cost, and delay time. 

Learn more about API's delay lines, contact us, or request a quote.

This post originally appeared in Wireless Design & Development

Tags: , ,

Infographics | RF/Microwave & Microelectronics

Delay Lines Week: Where Can You Find API's Delay Lines?

by Allison Goss 11. March 2015 09:20

Weather radar. Electronic warfare (EW) target generation. Clock synchronization. What do all of these systems have in common? API's delay lines can be found in all of them, plus many others.

Delay Lines APPLICATIONS API Technologies Where Can You Find API's Delay Lines? API's Delay Lines, featuring BAW (Bulk Acoustic Wave), SAW (Surface Acoustic Wave), Coaxial ­ High Frequency, LC (Lumped Constant), & Steel ­ Pulse Compression topologies, are used in a number of applications. Maritime Radar Doppler Processing Weather radars emit pulses which track the movement and location of objects like raindrops, hailstones, etc. Delay lines are used to control the timing of these pulses. On-board radar scanners provide bearing and distance of ships and land targets in the vicinity for collision avoidance and navigation at sea.EW Target Generation Communications Systems Clock Synchronization A radar target generator passes a radar signal through delay lines to a receiver to simulate a fixed target in time, which may be used to range calibrate the system. In many telecommunications networks, delay lines are used to synchronize information to set clock timing. Delay lines provide required delays to synchronize data for video or communication systems such as those used in TV broadcasting. micro.apitech.com/delay_lines

 Learn more about API's delay lines applications, request a quote, or contact us.

Tags: , ,

Infographics | RF/Microwave & Microelectronics

Introducing Delay Lines Week

by Jaymie Murray 9. March 2015 09:36

API’s extensive catalogue of delay lines offer a range of semi-standard and customizable topologies that feature wide bandwidths and low insertion loss. Our BAW (Bulk Acoustic Wave), SAW (Surface Acoustic Wave), Lumped Constant, Steel Dispersive, and Coaxial - High Frequency delay lines are available in a variety of package sizes and interface options, ensuring that our customers will get the best solution for their individual needs. All this week, we will be exploring the many features and applications of our delay lines and what they can offer to customers that require both high performance as well as high reliability. 

Delay Lines API TECHNOLOGIES BAW Topologies SAW Low frequency Bulk Acoustic Wave (BAW) Delay Lines offer a wide range of semi-standard or custom delay solutions designed to meet unique specifications. Many interface options are offered including SMA (Female and Male), N-Type (Female), TNC (Female), Leaded and SMD. Packaging options include low cost, plastic encapsulated or hermetically welded. BAW delay lines are available in both connectorized or pin and surface mount. Frequency Range: 20MHz - 2000MHz Delay: 0.1µsec – 10µsec InsertionLoss: Starts at 3dB, increase withdelay and bandwidth Frequency Range: 10MHz - 120MHz Delay: 0.15µsec – 3,000µsec InsertionLoss: 6dB – 65dBSteel Dispersive Lumped Constant Coaxial Non-dispersive and dispersive SAW Delay Lines offer semi-standard or custom designs with various delay and bandwidth options. SAW Delay Lines are available in several packaging options such as ceramic leadless chip carriers, which provide small size and weight, and platform packages, which are suited for harsh applications. API Technologies has experience with delay lines on various substrates including quartz, lithium tantalate and lithium niobate. All SAW Delay Lines are hermetically sealed to ensure robust performance. Lumped Constant Delay Lines offer excellent frequency stability in semi-standard or custom designs to meet unique specifications. Active buffered, passive fixed and variable designs are available. Many interface options are offered including DIP, SIP Leaded and SMD. Packaging options include low cost, plastic encapsulated or hermetically welded. Pulse compression Dispersive Steel Delay Lines are offered in semi-standard or custom designs and available in many interface options including SMA (Female and Male), N-Type (Female), TNC (Female), Leaded and SMD. Our dispersive Steel delay lines can be ovenized for high stability center frequencies. Non- or hermetically welded packaging options are available. Frequency Range: DC- 6GHz Delay:1nsec -250nsec InsertionLoss:0.2dB-50dB Frequency Range: 5MHz - 65MHz Delay: 10µsec - 350µsec InsertionLoss: 20-45dB Frequency Range: DC - 150MHz Delay: 10nsec – 5000nsec InsertionLoss: 5% bandwidthHigh frequency Coaxial Delay Lines utilize semi-rigid cable, from small diameters, such as .041” up to diameters of .250”. API’s coaxial delay lines can be easily adjusted by changing the length of the cable and can be heated to improve temperature stability. Many interface options are offered including SMA (Female and Male), N-Type (Female), TNC (Female), Leaded and SMD. API offers a wide range of semi-standard and custom coaxial delay solutions designed to meet customer specifications for a wide range of applications. InsertionLoss:0.2dB-50dB Applications Signal Processing Circuits Radar Systems Electronic Warfare Clock Synchronization micro.apitech.com/delay_lines

Learn more, request a quote, or contact us

Month List

Tag cloud